Laboratory 1-1. Thermodynamics of Solutions of Non-Electrolytes and Biologically Active Substances

Scientific direction: 
Chemistry and physical chemistry of solutions, theoretical foundations of chemical-engineering processes in liquid media
Phone: 
+7 (4932) 351859

 

 

General branches of laboratory research activities:

 

  • acid dissociation of amino acids and peptides, pK, ΔdisH, fractions of their ion forms in solution;
  • discrimination of amino acids and peptides in processes of interaction with coferments and their models in accordance with particle charge;
  • thermodynamics of solvation of amino acids and peptides in mixtures of water with organic co-solvents that are usable for organic synthesis, enzymology, cosmetics;
  • structural and thermodynamic aspects of interaction of peptides with micelles as model of biological membranes;
  • thermodynamics of solvation of urea bicyclic derevatives as potential  neuroleptic drugs:  balance of hydrophobic and hydrophilic contributions, isotope solvation effects;
  • thermodynamics of sublimation of oligopeptides on basis of mass spectrometry experiments
Projects and grants:

 

  • RFBR grant № 18-03-01032 "Regularity of interaction of synthetic peptides with micelles: thermodynamic and structure aspects"
  • RFBR grant № 04-03-32957 “Complex approach for studying thermodynamic properties of active substances on basis of urea and its alkyl derivatives” 
  • RFBR grant № 06-03-96312-r_centr_а. “Influence of acid-base equilibria on electrostatic “recognition” of amino acid molecules and peptides in reactions with model coenzyme pyridoxalphosphate receptors in aqueous buffer systems” 
  • Russian Federation President grant № МК- 4905. 2006.3. “Interaction of amino acids with components of water-organic solvents and model coenzymes compounds in buffer solution” 

 

IO head of Laboratory, Leading researcher
Phd in chemistry
Senior Researcher
Head of the laboratory
Doctor of сhemical sciences
Senior Researcher
Senior researcher
Phd in chemistry
Senior Researcher

2010-2016 years:

Thermodynamics, solution, solvation, intermolecular interaction

  1. Barannikov V.P., Guseynov S.S., Vyugin A.I. Enthalpies of solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n=1–4) in different H-bonding solvents: methanol, chloroform and water. Group contribution method as applied to the polar oligomers. // J. Chem. Thermodyn. 2011. V. 43. N.12. P.1928–1935. http://dx.doi.org/10.1016/j.jct.2011.07.001
  2. V. P. Barannikov and S. S. Guseinov. Thermodynamic Functions of Solvation of 1,4-Dioxane in Various Solvents at 298.15 K. // Russian Journal of Physical Chemistry A, 2014, Vol. 88, No. 2, pp. 252–256. (Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 2, pp. 269–273). http://link.springer.com/article/10.1134/S0036024414020058
  3. Ivanov E.V., Batov D.V., Kravchenko A.N. (D2O−H2O) solvent isotope effects on some thermodynamic properties of the Albicar dissolution (hydration) between T = (278.15 and 313.15) K at ambient pressure. // The Journal of Chemical Thermodynamics. 2016. V.97. P.341-347. http://dx.doi.org/10.1016/j.jct.2016.02.012
  4. V.I. Smirnov, V.G. Badelin, Influence of the composition of water–organic mixtures and of organic solvents properties on solvation of glycyl-L-tyrosine at 298.15 K. // J. Mol. Liquids. 195 (2014) 139–144. http://dx.doi.org/10.1016/j.molliq.2014.02.018
  5. V.I. Smirnov, V.G. Badelin, Enthalpies of L-threonine dissolution in some aqueous amides at 298.15K. // Thermochim. Acta. 551 503-504 (2010) 97–99.  http://dx.doi.org/10.1016/j.tca.2010.03.014
  6. V.I. Smirnov, V.G. Badelin, Enthalpies of solution of glycylglycine in water–organic solvent media at 298.15K. // Thermochim. Acta 501 (2010) 55–58.   http://dx.doi.org/10.1016/j.tca.2010.01.006
  7. V.G. Badelin, V.I. Smirnov. The Dependence of the Enthalpy of Solution of L-Methionine on the Composition of Water–Alcohol Binary Solvents. // Russ. J. Phys. Chem. A, 84 (2010) 1163–1168. https://link.springer.com/article/10.1134/S0036024410070150
  8. V.G. Badelin, V.I. Smirnov. Dependence of the Solution and Transfer Enthalpies of  DL-α-Alanyl-DL-α-Asparagine on the Composition of Water–Amide Binary Solvents at 298.15 K. // Russ. J. Phys. Chem. A, 85 (2011) 944–947. https://link.springer.com/article/10.1134/S0036024411060082
  9. V.I. Smirnov, V.G. Badelin, Enthalpies of solution of dl-α-alanyl-dl-α-asparagine in aqueous alcohols at 298.15K. Thermochim. Acta 512 (2011) 55–58. http://dx.doi.org/10.1016/j.tca.2010.08.022
  10. V.I. Smirnov, V.G. Badelin, Enthalpies of solution of glycylglycylglycine in aqueous solution of amides at 298.15K. // Thermochim. Acta 520 (2011) 153–155. http://dx.doi.org/10.1016/j.tca.2011.02.039
  11. V.I. Smirnov, V.G. Badelin. Dependence of enthalpies of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures at 298.15 K. // Thermochim. Acta 524 (2011) 35– 38.  http://dx.doi.org/10.1016/j.tca.2011.06.008
  12. V.G. Badelin, V.I. Smirnov. Influence of the composition of aqueous-alcohol solvents on the thermodynamic characteristics of L-phenylalanine dissolution at 298.15 K. // Thermochimica Acta 526 (2011) 46–49. http://dx.doi.org/10.1016/j.tca.2011.08.022
  13. V.G. Badelin, V.I. Smirnov. Effects of Water–Alcohol Binary Solvents on the Thermochemical Characteristics of L-Tryptophane Solution at 298.15 K. // Russ. J. Phys. Chem. A, 87 (2013) 40–43.https://link.springer.com/article/10.1134/S0036024413010020
  14. V.I. Smirnov, V.G. Badelin. Enthalpies of solution of β-alanyl-β-alanine in aqueous solution of amides at 298.15 K. // Thermochim. Acta 536 (2012) 74–76. http://dx.doi.org/10.1016/j.tca.2012.02.028
  15. V.I. Smirnov, V.G. Badelin. Influence of the composition of aqueous-alcohol solvents on thermodynamic characteristics of dl-α-alanyl-dl-norleucine dissolution at 298.15 K. // Thermochim. Acta 544 (2012) 43– 46. http://dx.doi.org/10.1016/j.tca.2012.06.014
  16. V.I. Smirnov, V.G. Badelin. Thermochemistry of the Dissolution of DL-α-Alanyl-DL-Norleucine in Aqueous Solutions of Amides at 298.15 K. // Russ. J Phys. Chem. A, 87 (2013) 1793–1797. https://link.springer.com/article/10.1134/S0036024413110204
  17. V.I. Smirnov, V.G. Badelin. Enthalpy Characteristics of Dissolution of L-Tryptophan in Water + Formamides Binary Solvents at 298.15 K. // Russ. J. Phys. Chem. A, 87 (2013) 1165–116. https://link.springer.com/article/10.1134/S0036024413070285
  18. V.I. Smirnov, V.G. Badelin. Enthalpies of solution of L-phenylalanine in aqueous solution of amides at 298.15 K. // Thermochim. Acta 551 (2013) 145– 148. http://dx.doi.org/10.1016/j.tca.2012.11.004
  19. V.I. Smirnov, V.G. Badelin. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K. // Thermochim. Acta 565 (2013) 202– 204. http://dx.doi.org/10.1016/j.tca.2013.05.012
  20. V.I. Smirnov, V.G. Badelin. Effect of the Composition of a Water–Alcohol Solvent on the Thermodynamics of Dissolution of DL-α-Alanyl-β-Alanine at 298.15 K. // Russ. J. Phys. Chem. A, 88 (2014) 2087–2090. https://link.springer.com/article/10.1134/S0036024414120310
  21. V.I. Smirnov, V.G. Badelin. Enthalpies of β-Alanine Dissolution in Some Water + Organic Mixtures at 298.15 K. // J. Chem. Eng. Data. 56 (2014) 1774-1780. http://dx.doi.org/10.1021/je400966q
  22. V.I. Smirnov, V.G. Badelin. Dependence of the Enthalpies of Alanyl-alanine Dissolution on the Composition of Mixed Water + Acetone and Water + DMSO Solvents at 298.15 K // Russ. J. Phys. Chem. A, 89 (2015)1311–1315. https://link.springer.com/article/10.1134/S0036024415080294 V.G. Badelin, V.I. Smirnov. Thermodynamics of DL-Alalnyl-DL-Asparagine Dissolution in Water–Organic Mixtures at 298.15 K. // Russ. J. Phys. Chem. A, 89 (2015) 1796–1800.   https://link.springer.com/article/10.1134/S0036024415100039
  23. V.I. Smirnov, V.G. Badelin. Influence of the composition of water–organic mixtures and the properties of organic solvents on thermochemical characteristics of l-methionine dissolution at 298.15 K. // Thermochimica Acta 616 (2015) 20–26. http://dx.doi.org/10.1016/j.tca.2015.08.006
  24. V.I. Smirnov, V.G. Badelin. Enthalpies of L-proline dissolution in aqueous solution of N, N-dimethylformamide at 293.15–308.15 K. // Thermochim. Acta 606 (2015) 41–44. http://dx.doi.org/10.1016/j.tca.2015.03.007
  25. V.I. Smirnov, V.G. Badelin. Enthalpy Characteristics of the Dissolution of L-Valine in Water/Formamide Mixtures at 298.15 K. // Russ. J. Phys. Chem. A, 90 (2016) 2165–2169. https://link.springer.com/article/10.1134/S0036024416110261
  26. V.I. Smirnov, V.G. Badelin. Influence of the composition of aqueous-amide solvents on enthalpic characteristics of L-proline dissolution at T= 298.15 K. // J. Mol. Liquids 220 (2016) 21–25. http://dx.doi.org/10.1016/j.molliq.2016.04.033
  27. V.I. Smirnov, V.G. Badelin. Thermochemical Characteristics of the Dissolution of D-Valine in Aqueous Solutions of Some Amides at T = 298.15 K. // J. Chem. Eng. Data. 89 (2016) 1593-1780. http://dx.doi.org/10.1021/acs.jced.5b01087
  28. V.G. Badelin,V.I. Smirnov. Enthalpy Characteristics of L-Proline Dissolution  in Certain Water–Organic Mixtures at 298.15 K. // Russ. J. Phys. Chem. A, 91 (2017) 84–88. https://link.springer.com/article/10.1134/S0036024416120037
  29. V.I. Smirnov, V.G. Badelin. Thermochemical characteristics of 4-OH-L-proline and L-proline dissolution in (H2O + alcohol) mixtures at T=298.15 K. // J. Mol. Liquids 229 (2017) 198–202. http://dx.doi.org/10.1016/j.molliq.2016.12.025
  30. I.N. Mezhevoi, V.G. Badelin Thermochemical investigation of interaction of L-serine with glycerol, ethylene glycol, and 1,2-propylene glycol in aqueous solutions // Russian Journal of General Chemistry. 2010. Vol. 80. N 1. P. 27-30 (Zhurnal Obshchei Khimii. 2010. Vol. 80. N 1. P. 31-34. http://link.springer.com/article/10.1134/S1070363210010056
  31. I.N. Mezhevoi, V.G. Badelin Standard enthalpies of dissolution of L-alanine in the water solutions of glycerol, ethylene glycol, and 1,2-propylene glycol at 298.15 K // Russian Journal of Physical Chemistry A. 2010. Vol. 84. N 4. P. 607-610 (Zhurnal Fizicheskoi Khimii 2010. Vol. 84. N 4. P. 691-694). http://link.springer.com/article/10.1134/S0036024410040151
  32. V.G. Badelin, I.N. Mezhevoi Thermochemical characteristics of the interaction of L-cysteine with glycerol, ethelene glycol, and 1,2-propylene glycol in aqueous solutions // Russian Journal of Physical Chemistry A. 2011. Vol. 85. N 6. P. 934-937. (Zhurnal Fizicheskoi Khimii 2011. Vol. 85. N 6. P. 1028-1031). http://link.springer.com/article/10.1134/S0036024411060070
  33. I.N. Mezhevoi, V.G. Badelin Enthalpy characteristics of L-asparagine interaction with glycerol, ethylene glycol, and 1,2-propylene glycol in aqueous solutions // Russian Journal of General Chemistry. 2012. Vol. 82. N 6. P. 1101-1104. (Zhurnal Obshchei Khimii. 2012. Vol. 82. N 6. P. 942-946). http://link.springer.com/article/10.1134/S1070363212060102
  34. I.N. Mezhevoi, V.G. Badelin Thermochemical characteristics of interactions of DL-alanine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol // Russian Journal of General Chemistry. 2012. Vol. 82. N 11. P. 1801-1804. (Zhurnal Obshchei Khimii. 2012. Vol. 82. N 11. P. 1810-1813). http://link.springer.com/article/10.1134/S1070363212110102
  35. I.N. Mezhevoi, V.G. Badelin Enthalpy pair coefficients of interaction for DL-valine in aqueous solutions of polyatomic alcohols at 298 K // Russian Journal of Physical Chemistry A. 2013. Vol. 87. N 12. P. 2023-2026. (Zhurnal Fizicheskoi Khimii 2013. Vol. 87. N 12. P. 2058-2061). http://link.springer.com/article/10.1134/S0036024413120169
  36. I.N. Mezhevoi, V.G. Badelin Thermochemical analysis of intermolecular interaction of aliphatic amino acids with propanediol -1,3 in aqueous media // Russian Journal of General Chemistry. 2014. Vol. 84. N 2. P. 223-226. (Zhurnal Obshchei Khimii. 2014. Vol. 84. N 2. P. 229-233). http://link.springer.com/article/10.1134/S107036321402011X
  37. I.N. Mezhevoi, V.G. Badelin Thermochemical study of glycylglycine interaction with polyhydric alcohols in aqueous solutions // Russian Journal of General Chemistry. 2015. Vol. 85. N 4. P. 816-819. (Zhurnal Obshchei Khimii. 2015. Vol. 85. N 4. P. 570-574). http://link.springer.com/article/10.1134/S1070363215040076
  38. I.N. Mezhevoi, V.G. Badelin Energetics of the molecular interactions of L-cysteine, L-serine, and L-asparagine in aqueous propylene glycol solutions at 298.15 K // Russian Journal of Physical Chemistry A. 2015. Vol. 89. N 3. P. 393-397. (Zhurnal Fizicheskoi Khimii 2015. Vol. 89. N 3. P. 396-400). http://link.springer.com/article/10.1134/S0036024415020168
  39. I.N. Mezhevoi, V.G. Badelin Enthalpic parameters of interaction between diglycylglycine and polyatomic alcohols in aqueous solutions // Russian Journal of Physical Chemistry A. 2015. Vol. 89. N 12. P. 2222-2225. (Zhurnal Fizicheskoi Khimii 2015. Vol. 89. N 12. P. 1877-1880). http://link.springer.com/article/10.1134/S0036024415120195
  40. V.G. Badelin, E.Yu. Tyunina. Effect of organic co-solvents on the salvation enthalpies of amino acids and dipeptides in mixed aqueous solutions. // Russ. J. Phys. Chem. A. 2011. Vol.85. N9. P.1550-1557. (Zhurnal Fizicheskoi Khimii 2011. Vol. 85. N 9. P. 1668-1675) https://link.springer.com/article/10.1134/S0036024411090056
  41. E.V. Ivanov, E.Yu. Lebedeva, V.K. Abrosimov. Volume-related interaction parameters for dilute solutions of tetramethylurea in normal and heavy water between 278.15 K and 318.15 K. // Thermochim. Acta. 500 (2010) 38-43. http://dx.doi.org/10.1016/j.tca.2009.12.008
  42. D.V. Batov, E.V. Ivanov. D2O–H2O solvent isotope effects on the enthalpy of 1,1,3,3-tetramethylurea hydration between 278.15 and 318.15 K. // Thermochim. Acta. 500 (2010) 119-122. http://dx.doi.org/10.1016/j.tca.2009.10.018
  43. E.V. Ivanov. Volumetric properties of aqueous solutions of tetramethyl-bis-urea between 278.15 and 338.15 K at atmospheric pressure. // J. Solution Chem. 39 (2010) 343-354. http://dx.doi.org/10.1007/s10953-009-9475-3
  44. E.V. Ivanov, A.V. Kustov. Volumetric properties of (water + hexamethylphosphoric triamide) from (288.15 to 308.15) K. // J. Chem. Thermodyn. 42 (2010) 1087-1093. http://dx.doi.org/10.1016/j.jct.2010.04.003
  45. E.V. Ivanov. Water as a solute in nitromethane: Effect of H2O–D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K. // J. Chem. Thermodyn. 42 (2010) 1458-1464. http://dx.doi.org/10.1016/j.jct.2010.07.002
  46. E.V. Ivanov, V.I. Smirnov. Water as a solute in aprotic dipolar solvents. 1. D2O–H2O solute isotope effects on the enthalpy of water dissolution in acetone, tetrahydrofuran and 1,4-dioxane at 298.15 K. // Thermochim. Acta. 511 (2010) 194-197. http://dx.doi.org/10.1016/j.tca.2010.07.017
  47. E.V. Ivanov, V.I. Smirnov. Water as a solute in aprotic dipolar solvents. 2. D2O–H2O solute isotope effects on the enthalpy of water dissolution in acetonitrile, nitromethane and propylene carbonate at 298.15 K. // Thermochim. Acta. 511 (2010) 197-201. http://dx.doi.org/10.1016/j.tca.2010.09.013
  48. E.V. Ivanov, E.Yu. Lebedeva, V.K. Abrosimov. Volume-related interaction parameters for dilute solutions of 1,3-dimethylpropyleneurea in normal and heavy water between 278.15 K and 318.15 K. // Thermochim. Acta. 513 (2011) 26-32. http://dx.doi.org/10.1016/j.tca.2010.11.002
  49. D.V. Batov, E.V. Ivanov. D2O–H2O solvent isotope effects on the enthalpy of 1,3-dimethylpropyleneurea hydration at temperatures from (278.15 to 313.15) K and atmospheric pressure. // Thermochim. Acta. 514 (2011) 16-21. http://dx.doi.org/10.1016/j.tca.2010.11.025
  50. E.V. Ivanov, E.Yu. Lebedeva. Volumetric properties of H2O and D2O solutions in propylene carbonate at T = (278.15, 288.15, 298.15, 308.15, and 318.15) K under atmospheric pressure. // J. Mol. Liquid. 159 (2011) 124-131. http://dx.doi.org/10.1016/j.molliq.2010.12.009
  51. E.V. Ivanov. Phenomenon of “negative partial molar expansibility” of water in tetrahydrofuran: How plausible is it? Discussion on the paper “Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations” by Veronica Belandria, Ammir H. Moham-madi and Dominique Richon [J. Chem. Thermodyn. 41 (2009) 1382−1386]. J. Chem. Thermodyn. 43 (2011) 58-62. http://dx.doi.org/10.1016/j.jct.2010.08.006
  52. E.V. Ivanov, D.V. Batov. Enthalpy-related interaction parameters in H/D isotopically distinguishable aqueous solutions of tetramethylurea cyclic derivatives at 298.15 K. // Thermochim. Acta. 523 (2011) 253-257. http://dx.doi.org/10.1016/j.tca.2011.05.019
  53. E.V. Ivanov, V.I. Smirnov. Water as a solute in aprotic dipolar solvents. 3. D2O–H2O solute isotope effects on the enthalpy of water dissolution in dimethylsulphoxide, N,N-dimethylformamide and N,N-dimethylacetamide at 298.15 K. // Thermochim. Acta. 526 (2011) 257-261. http://dx.doi.org/10.1016/j.tca.2011.09.009
  54. E.V. Ivanov. Volumetric properties of dilute solutions of water in ethanol and water-d2 in ethanol-d1 between T = (278.15 and 318.15) K. // J. Chem. Thermodyn. 47 (2012) 162-170. http://dx.doi.org/10.1016/j.jct.2011.10.009
  55. E.V. Ivanov. Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolytes. // J. Chem. Thermodyn. 47 (2012) 437-440. http://dx.doi.org/10.1016/j.jct.2011.11.018
  56. E.V. Ivanov, V.K. Abrosimov, E.Yu. Lebedeva. Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis. // J. Chem. Thermodyn. 53 (2012) 131-139. http://dx.doi.org/10.1016/j.jct.2012.04.007
  57. E.V. Ivanov, E.Yu. Lebedeva, V.K. Abrosimov, N.G. Ivanova. Densimetric studies of binary solutions involving H2O or D2O as a solute in dimethylsulfoxide at temperatures from (293.15 to 328.15) K and atmospheric pressure. // J. Solution Chem. 41 (2012) 3311-3333. http://dx.doi.org/10.1007/s10953-012-9877-5
  58. E.V. Ivanov, V.K. Abrosimov. Apparent molar volumes and expansibilities of thiourea, 1,3-dimethylurea and 1,3-dimethylthiourea in water at temperatures from T = (278.15 to 318.15) K and atmospheric pressure. // J. Chem. Eng. Data. 58 (2013) 1103-1111. http://dx.doi.org/10.1021/je301352v
  59. E.V. Ivanov, D.V. Batov. Temperature-dependent behavior of enthalpies and heat capacities of solution in water for thiourea and its N,N’-dimethylsubstituted derivative. // Thermochim. Acta. 558 (2013) 10-15. http://dx.doi.org/10.1016/j.tca.2013.02.003
  60. E.V. Ivanov. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure. // J. Chem. Thermodyn. 72 (2014) 37-43. http://dx.doi.org/10.1016/j.jct.2013.12.028
  61. E.V. Ivanov E.V., D.V. Batov, V.V. Baranov, A.N. Kravchenko, V.K. Abrosimov. Standard enthalpies and heat capacities of 2,4-dimethyl- and 2,4-diethylglycolurils in water at temperatures from (278.15 to 318.15) K. // Thermochim. Acta. 586 (2014) 72-74. http://dx.doi.org/10.1016/j.tca.2014.04.012
  62. E.V. Ivanov E.V., D.V. Batov, G.A. Gazieva, A.N. Kravchenko, V.K. Abrosimov. D2O–H2O solvent isotope effects on the enthalpies of bicaret hydration and dilution of its aqueous solutions at different temperatures. // Thermochim. Acta. 590 (2014) 145-150. http://dx.doi.org/10.1016/j.tca.2014.05.011
  63. E.V. Ivanov E.V., D.V. Batov, V.K. Abrosimov. D2O–H2O solvent isotope effects on the enthalpy of 1,1,3,3-tetramethyl-2-thiourea hydration at temperatures from (278.15 to 313.15) K and ambient pressure. // Thermochim. Acta. 590 (2014) 206-209. http://dx.doi.org/10.1016/j.tca.2014.06.025
  64. E.V. Ivanov E.V. Volumetric properties of some asymmetrically methyl-N-substituted thioureas in water between (278.15 and 318.15) K at ambient pressure. // J. Mol. Liquid. 600 (2014) 426-431. http://dx.doi.org/10.1016/j.molliq.2014.08.001
  65. E.V. Ivanov, E.Yu. Lebedeva, V.K. Abrosimov. Standard volumetric properties of tetra-N-ethylglycoluril (bicaret) in ordinary and heavy water at temperatures from (278.15 to 318.15) K and ambient pressure. // J. Chem. Eng. Data. 60 (2015) 2079-2089. http://dx.doi.org/10.1021/acs.jced.5b00154
  66. E.V. Ivanov E.V., E.Yu. Lebedeva, V.K. Abrosimov, V.V. Baranov, G.A. Gazieva, A.N. Kravchenko. Standard molar volumes and expansibilities of 1,3-alkyl-N-substituted achiral glycolurils in water at T = (278.15 to 318.15) K and p = 0.1 MPa: A comparative analysis. // J. Chem. Thermodyn. 89 (2015) 270-277. http://dx.doi.org/10.1016/j.jct.2015.05.028
  67. E.V. Ivanov E.V., D.V. Batov. Enthalpies and heat capacities of solution of racemic N-methyl-substituted glycolurils in water at T = (278.15 to 313.15) K. // Thermochim. Acta. 620 (2015) 69-54. http://dx.doi.org/10.1016/j.tca.2015.09.023
  68. E.V. Ivanov E.V., D.V. Batov. Thermochemistry of dissolution of cis-N-dimethyl-glycoluril in water at T = (278.15 – 313.15) K and ambient pressure. // Thermochim. Acta. 625 (2016) 53-55. http://dx.doi.org/10.1016/j.tca.2016.01.003
  69. E.V. Ivanov E.V., D.V. Batov, V.V. Baranov, A.V. Kravchenko. Temperature-dependent thermochemical properties of Mebicaret (2,4-dimethyl-6,8-diethylglycoluril) solutions in H2O and D2O at the ambient pressure. // Thermochim. Acta. 627 (2016) 48-54. http://dx.doi.org/10.1016/j.tca.2016.01.010
  70. E.V. Ivanov E.V., D.V. Batov. Effect of the H/D solvent isotope substitution on enthalpy-related interaction parameters in aqueous solutions of the racemic Albicar at T = 298.15 K and ambient pressure. // J. Chem. Thermodyn. 102 (2016) 9-11. http://dx.doi.org/10.1016/j.jct.2016.06.020
  71. E.V. Ivanov E.V., E.Yu. Lebedeva. Standard volumetric characteristics of N-dimethyl-substituted bicyclic bisureas (glycolurils) in water at T = (278.15 to 318.15) K and p ~ 0.1 MPa. // J. Mol. Liquid. 222 (2016) 1164-1171. http://dx.doi.org/10.1016/j.molliq.2016.07.131

 

Acid Base equilibria

  1. V. G. Badelin, V. P. Barannikov, G. N. Tarasova, N. V. Chernyavskaya, A. V. Katrovtseva, and Fam Tkhi Lan. Thermodynamical Characteristics of Acid_Base Equilibria in Glycyl-Glycyl-Glycine Aqueous Solutions at 298 K. // Russian Journal of Physical Chemistry A. 2012. Т. 86. № 1. С. 40-44. http://link.springer.com/article/10.1134/S003602441112003X
  2. V. G. Badelin, V. P. Barannikov, A. V. Katrovtseva, and G. N. Tarasova. Dissociation Constants of Protolytic Dissociation of Glutamyl-Glutamic and Glycyl-Glutamic Acids in Aqueous Solution at 298 K. // Russian Journal of General Chemistry, 2013, Vol. 83, No. 5, pp. 945–948. (Zhurnal Obshchei Khimii, 2013, Vol. 83, No. 5, pp. 809–812). http://link.springer.com/article/10.1134/S1070363213050113
  3. Kochergina L.A., Krutova O.N., Volkov A.V., Damrina K.V., Badelin V.G. Standard enthalpies of formation for glycyl-tyrosine and products of its dissociation in aqueous solutions // Russian Journal of Physical Chemistry A. 2015. Т. 89. № 7. С. 1223-1226. http://link.springer.com/article/10.1134/S0036024415070171
  4. Kochergina L.A., Krutova O.N., Badelin V.G. Standard enthalpies of dissolution of l-tryptophan and the formation of its dissociation products in aqueous solutions at 298.15 K // Russian Journal of Physical Chemistry A. 2014. Т. 88. № 5. С. 790-793. http://link.springer.com/article/10.1134/S0036024414050148

 

Interaction of bioactive substances with co-ferments and organic species

  1. V. P. Barannikov, V. G. Badelin, E. A. Venediktov, I. N. Mezhevoi, and S. S. Guseinov. Thermodynamical Characteristics of the Reaction of Pyridoxal-5'-Phosphate with L-Amino Acids in Aqueous Buffer Solution. // Russian Journal of Physical Chemistry A, 2011, Vol. 85, No. 1, pp. 16–20.( Zhurnal Fizicheskoi Khimii, 2011, Vol. 85, No. 1,pp. 20–24). http://link.springer.com/article/10.1134/S003602441101002X
  2. E.Yu. Tyunina, V.G. Badelin, I.N. Mezhevoi, G.N. Tarasova, Thermodynamics of aromatic amino acids interactions with heterocyclic ligands. // Journal of Molecular Liquids. 2015. Vol. 211. P. 494-497. http://dx.doi.org/10.1016/j.molliq.2015.07.024
  3. E.Yu. Tyunina, V.G. Badelin, Interaction of L-Phenylalanine with Nicotinic Acid in Buffer Solution by Volumeric Measurements at Various Temperatures.  //  J. Solution Chem. 2016. Vol. 45. No.3. P.475-482. http://dx.doi.org/10.1007/s10953-016-0451-4
  4. V.G. Badelin, I.N. Mezhevoi, E.Yu. Tyunina Enthalpic characteristics of solution of amino acids and aliphatic dipeptides in aqueous solutions of KCl. // Russian Journal of Physical Chemistry A. 2010. Vol. 84. N 11. P. 1862-1866. (Zhurnal Fizicheskoi Khimii 2010. Vol. 84. N 11. P. 2042-2047). http://link.springer.com/article/10.1134/S0036024410110075
  5. I.N. Mezhevoi., V.G. Badelin Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298,15 K // Russian Journal of Physical Chemistry A.  2013. Vol. 87. N 4. P. 589-592. (Zhurnal Fizicheskoi Khimii 2013. Vol. 87. N 4. P. 610-614). http://link.springer.com/article/10.1134/S0036024413040183
  6. V.G. Badelin, E.Yu. Tyunina, I.N. Mezhevoi, G.N. Tarasova Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K // Russian Journal of Physical Chemistry A. 2013. Vol. 87. N 8. P. 1306-1309. (Zhurnal Fizicheskoi Khimii 2013. Vol. 87. N 8. P. 1316-1319). http://link.springer.com/article/10.1134/S0036024413070078
  7. V.G. Badelin, E.Yu. Tyunina, I.N. Mezhevoi, G.N. Tarasova Thermodynamic characteristics of molecular interactions between L-tryptophan and nicotinic acid and uracyl in aqueous buffer solutions at 298 K // Russian Journal of Physical Chemistry A. 2015. Vol. 89. N 12. P. 2229-2233. (Zhurnal Fizicheskoi Khimii 2015. Vol. 89. N 12. P. 1884-1888). http://link.springer.com/article/10.1134/S0036024415120031
  8. E.Yu. Tyunina, V.G. Badelin, I.N. Mezhevoi Study on interaction of nicotinic acid with L-Phenylalanine in buffer solution by heat capacity measurements at various temperatures // Journal of Solution Chemistry. 2017. Vol. 46. N 2. P. 249-258. http://link.springer.com/article/10.1007/s10953-017-0570-6
  9. V.G. Badelin, I.N. Mezhevoi, E.Yu. Tyunina Measuring the enthalpies of interaction between glycine, L-cysteine, glycilglycine, and sodium dodecyl sulfate in aqueous solutions // Russian Journal of Physical Chemistry A. 2017. Vol. 91. N 3. P. 521-524. (Zhurnal Fizicheskoi Khimii 2017. Vol. 91. N 3. P. 483-486.) http://link.springer.com/article/10.1134/S0036024417030025
  10. E.Yu. Tyunina, V.G. Badelin, G.N. Tarasova. Interactions of aromatic amino acids with heterocyclic ligands: An IR spectroscopic study. // Russ. J. Phys. Chem. A. 2015. Vol.89. No.9. P.1595-1598 (Zhurnal Fizicheskoi Khimii 2015. Vol. 89. N 9. P. 1407-1410) https://link.springer.com/article/10.1134/S0036024415080300
  11. Barannikov V.P., Guseinov S.S., V'ugin A.I. Molecular complexes of crown ethers in crystals and solutions. // Russian Journal of Coordination Chemistry. 2002. V. 28. № 3. P. 153-162. http://link.springer.com/article/10.1023/A%3A1014729400394

 

Sublimation

  1. Tyunina V.V., Krasnov A.V., Girichev G.V., Badelin V.G. Enthalpy of sublimation of hydroxyl-containing amino acids: knudsen's effusion mass spectrometric study // The Journal of Chemical Thermodynamics. 2016. Т. 98. С. 62-70. http://dx.doi.org/10.1016/j.jct.2016.02.021
  2. V.V. Tyunina, A.V. Krasnov, E.Yu. Tyunina, V.G. Badelin, G.V. Girichev. Enthalpy of sublimation of natural aromatic amino acids determined by Knudsen’s effusion mass spectrometric method. // J. Chem. Thermodynamic. 2014. Vol.74. P.221-226. http://dx.doi.org/10.1016/j.jct.2014.02.003
  3. Tyunina E.Yu., Badelin V.G. Sublimation effects and volume effects in the crystals of amino acids, peptides, and their some acetyl derivatives // Russian Journal of General Chemistry. 2013. Т. 83. № 4. С. 708-716.    http://link.springer.com/article/10.1134/S1070363213040178
  4. V.G. Badelin, E.Yu. Tyunina, A.V. Krasnov, V.V. Tyunina, N.I. Giricheva, A.G. Girichev. Mass spectrometry study of the sublimation of aliphatic dipeptides. // Russ. J. Phys. Chem. 2012. Vol.86. No.3. P.457-462 (Zhurnal Fizicheskoi Khimii 2012. Vol.86. N. 3. P. 528-533). https://link.springer.com/article/10.1134/S0036024412030065
  5. V.G. Badelin, V.V. Tyunina, G.V. Girichev, E.Yu. Tyunina. Relationship between molecular descriptors and the enthalpies of sublimation of natural amino acids. // Russ. J. Phys. Chem. 2016. Vol.90. No.7. P.1306-1311 (Zhurnal Fizicheskoi Khimii 2016. Vol.90. N. 7. P. 980-985).    https://link.springer.com/article/10.1134/S0036024416070037

 

Transfer processes in solution

  1. E. Tyunina, V. Afanas`ev, M. Chekunova. Viscosity and Density of Solutions of Tetraethylammonium Tetrafluoroborate in Propylene Carbonate at Different Temperatures. // J. Soltion Chem. 2012. Vol. 41. No.2. P. 307-317. https://link.springer.com/article/10.1007/s10953-012-9793-8
  2. E.Yu. Tyunina, M.D. Chekunova. Electrochemical properties of lithium hexafluoroarsenate in methyl acetate at various temperatures. // J. Mol. Liq. 2013. Vol. 187. P. 332-336. http://dx.doi.org/10.1016/j.molliq.2013.08.019
  3. E.Yu. Tyunina, V.N. Afanasiev, M.D. Chekunova. Electroconductivity of tetraethylammonium tetrafluoroborate in propylene carbonate at various temperatures. // J. Chem. Eng. Data. 2011. Vol. 56. N 7. P. 3222-3226. http://dx.doi.org/10.1021/je200309v
  4.  E.Yu. Tyunina, M. D. Chekunova. Physicochemical properties of binary solutions of propylene carbonate – acetonitrile in range of 253.15 – 313.15 K. // Russ. J. Phys. Chem. A. 2017. Vol. 91. No. 5. P. 894-900. (Zhurnal Fizicheskoi Khimii 2017. Vol. 91. N 5. P. 845-851) DOI: 10.1134/S0036024417050260  

 

Thermal analysis, solvates, polymorphs

  1. Surov O. V.,  Voronova M. I., Barannikov V. P., Shaposhnikov G. P. Structural Features and Thermal Stability of 25,26,27,28-Tetrahydroxycalix[4]arene Molecular Complexes with Solvents. // The Journal of Physical Chemistry С. 2014. V.118. No1. P.338-345. http://pubs.acs.org/doi/ipdf/10.1021/jp409003f
  2. Surov O. V.,  Voronova M. I., Barannikov V. P. Drastic and subtle thermally and gas-induced transformations of pure 4-tert-butylcalix[4]arene. // CrystEngComm. 2014. V.16. Iss.37. P.8700-8705. http://pubs.rsc.org/en/content/articlehtml/2014/ce/c4ce01156b
  3. M. I. Voronova, O. V. Surov, S. S. Guseinov, V. P. Barannikov, A. G. Zakharov. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. // Carbohydrate Polymers. 2015, 130 (2015) 440–447. http://dx.doi.org/10.1016/j.carbpol.2015.05.032