Structural properties of liquid-phase and fluid systems with various types of intermolecular interactions in the wide range of state parameters

+7 (4932) 327256
About the group:
General direction of laboratory investigations is structural analysis of liquid-phase systems in a wide range of state parameters. Major tasks are revelation of the specific character of ions surrounding in solutions, regularity of water-electrolyte diffusion-averaged structure formation. Methods in use: experimental methodology is X-ray diffraction and theoretical one is integral equations approach.
Main problems:
  • Physical-chemical properties of liquid solutions are determined by structural features as well as the nature of intermolecular interactions. The revelation of quantitative relations of structural and energetic characteristics with physical-chemical properties is one of the scientific liquid theory fundamental problems.
  • For development and application of new environmentally friendly technological processes and methods of obtaining materials with predetermined properties it is necessary to have a hard and interconsistent data of solutions properties that are used in such a processes. Particular interest as a result is insufficiently explored concentrated and multicomponent solutions, which are usually used in practice, as well as unexplored water-electrolyte systems in extreme conditions.
  • The laboratory tasks also include determination of structural features and nature of intermolecular interactions in electrolyte solutions of various concentrations, including glass-like state, and multicomponent mixtures that are the basis of HTSC materials, organic systems and mixtures, and also solutions in the wide range of temperatures and pressures.
  •  In this regard the special significance take an information, obtained by direct structural methods, among which a wide application has X-ray diffraction method on liquid solutions, its possibilities could be extended due to the application of  X-ray structure experiment from the results of integral equation method to the data analysis. The latter allows to determine the objects structural characteristics not available from X-ray diffraction analysis in a number of cases, and to predict systems structural properties in extreme conditions.
General results and current investigations:
Small-angle X-ray scattering technique allowing to determine the structural parameters of condensed systems at long distances (nanostructures) has been developed.
In cooperation with Fukuoka University (Japan) the unique rapid X-ray structural analysis methodology has been developed on the basis on imaging-plate diffractometer, allowed  to investigate structural parameters of liquid systems absorbed by mesoporous materials in the low-temperature range.
On the basis of proper X-ray diffraction results and literature information, complex approach to the analysis of water-electrolyte solutions in the wide range of concentrations and temperatures, allowing the possibility for liquids structural characteristics prediction was used.
One of the liquids statistical theory approaches – integral equations method is developing. Its reliability confirmed by agreement with experimental X-ray structure results. 
Data bank on the structural characteristics of ions in solutions with oxygen-containing anions  has been created, and the features of 1:1 electrolyte solution series structure formation in the range of high state parameters has been revealed.
Projects in progress:
 Application of complex approaches of X-ray structure analysis and integral equations methods for obtaining in-depth information about the features of short-range ordering in water-electrolyte systems. This technique allows to determine structural characteristics of objects which couldn’t be obtained correctly in X-ray diffraction investigations:
  • dilute and extremely dilute aqueous electrolyte solutions 
  • structural parameters of hydration of ions with similar radiuses or with those similar to ionic oxygen radius
Nonempirical way of structural properties of water-electrolyte systems in hard-to-reach for experimental methods state parameters range (at high temperatures and pressures, in critical, sub- and supercritical range, in supercooling and glass formation).
7 candidates and 2 Doctors defended their theses in laboratory.
Foreign partners:
University of Fukuoka (Japan), laboratory of structural investigation methods 
University of Bordo (France), laboratory of physical chemistry of molecular systems



Projects, Grants Laboratory:


  • RFBR grant № 01-03-32278 «Prediction of structural properties of 1:1 electrolyte concentrated aqueous solutions in extreme conditions». 
  • Project «Role of salvation effects in synthesis and reactivity of inorganic and active substances at ambient and supercritical state parameters» (within RAS complex program). 
  • RFBR grant № 06-03-96317.  
  • President of Russian Federation grant of young Russian scientists support МК-1029.2006.3. 


  1. Федотова М.В. Особенности ионной гидратации и ионной ассоциации в водном растворе бромида рубидия в до- и сверхкритических условиях. // Журн. общ. хим. 2009. Т. 79. N 9. C. 1429-1437. 
  2. Федотова М.В. Структурные параметры водного раствора RbBr в около- и сверхкритическом состоянии с близкой плотностью. // Журн. физ. хим. 2009. Т. 83. N. 12. С. 2391-2394. 
  3. Fedotova M. Effect of Temperature and Pressure on Structural Self-Organization of Aqueous Sodium Chloride Solutions // J. Mol. Liq. 2009. doi:10.1016/j.molliq.2009.05.006. 
  4. Idrissi A., Vyalov I., Damay P., Frolov A., Oparin R., Kiselev M. Assessment of the spatial distribution in sub- and supercritical CO2 using the nearest neighbor approach: a molecular dynamics analysis. // J. Phys. Chem. B. 2009. Vol. 113. N 48. pp 15820–15830. 
  5. Kustov A.V., Berezin B.D., Trostin V.N. The complexon-renal stone interaction: solubility and electronic microscopy studies. J. Phys. Chem. B. 2009. Vol. 113. pp. 9547-9550. 
  6. Кустов А.В., Березин Б.Д., Стрельников А.И., Шевырин А.А., Тростин В.Н. Взаимодействие комплексообразующего реагента c уролитом – основа создания эффективной малоинвазивной терапии фосфатурии. ДАН. 2009. Т. 428. Вып. N. 2 C. 203-205. 
  7. Korolev V.P., Antonova O.A., Smirnova N.L., Kustov A.V. Thermochemistry of Bu4NBr solutions in binary solvents containing formamide. J. Therm. Analysis & Calorimetry. 2009. Vol. 96. N. 3. P. 903-910. 
  8. Д. В. Батов. Термохимическое исследование влияния размера тетраалкиламмониевых катионов на взаимодействие их солей с формамидом и карбамидом в водном растворе. // Известия АН. Сер. хим. 2009. N. 4. С. 779 – 754. 
  9. Королев В.П. Влияние концентрации, температуры и изотопии на теплоемкость  водного раствора мочевины// Журн. структур. химии, 2009. T. 50. N. 6. С. 1147-1154. 
  10. Смирнов П.Р., Тростин В.Н. Структурные параметры гидратации иона Cu2+ в водных растворах его солей. // Журн. физ. химии. 2009. Т. 79. N. 8. С. 1233-1241.