Effect of Acetone as Co-Solvent on Fabrication of Polyacrylonitrile Ultrafiltration Membranes by Non-Solvent Induced Phase Separation

статья
Авторы публикации: 
Yushkin A., Basko A., Balynin A., Efimov M., Lebedeva T.,Ilyasova A.,Pochivalov K., Volkov A.
Журнал: 
Polymers
Год публикации: 
2022
Том/страницы: 
V.14(21). – Art. 4603.

For the first time, the presence of acetone in the casting solutions of polyacrylonitrile (PAN) in dimethylsulfoxide or N-methyl-2-pyrrolidone was studied with regards to thermodynamical aspects of phase separation of polymeric solutions induced by contact with non-solvent (water), formation and performance of porous membranes of ultrafiltration range. The positions of the liquid equilibrium binodals on the phase diagrams of these three-component and pseudo-three-component mixtures were determined. For PAN—N-methyl-2-pyrrolidone—water glass transition curve on a ternary phase diagram was plotted experimentally for the first time. The real-time evolution of the structure of mixtures of PAN with solvents (co-solvents) upon contact with a non-solvent (water) has been studied. The thermodynamic analysis of the phase diagrams of these mixtures, together with optical data, made it possible to propose a mechanism of structure formation during non-solvent induced phase separation of different mixtures. The addition of acetone promotes the formation of a spongy layer on the membrane surface, which decreases the probability of defect formation on the membrane surface and keeps finger-like macrovoids from the underlying layers of the membrane. It was shown that the molecular weight cut-off (MWCO) of the membranes can be improved from 58 down to 1.8 kg/mol by changing the acetone content, while polymer concentration remained the same.

Опубликовано:
Колкер Римма Семеновна
(07.12.2022)