The present paper deals with the recent studies on the preparation of porphyrin-based donor-acceptor complexes capable of photoinduced electron transfer for solution-processed organic solar cells. Here the synthesis and chemical structure of (octakis(3,5-di-tert-butylphenoxy)phthalocyaninato) cobalt(II) (1) and (2,3,7,8,12,18-hexamethyl,13,17-diethyl,5-(2-pyridyl)porphinato) manganese(III) chloride (2) are performed and self-assembly in toluene solution of 1 and 1′-N-methyl-2′-(pyridin-4-yl)pyrrolidino[3′,4′:1,2][60]fullerene (PyC 60 ) were discussed in more details. The structure of the obtained dyad 1-PyC 60 is confirmed by means of chemical thermodynamics/kinetics, UV–vis, IR, 1 H NMR spectroscopy. Photoelectrochemical studies of the phthalocyanine-fullerene dyad and its precursors were carried out by voltammetry and amperometry methods. A comparative analysis of the photoelectrochemical characteristics obtained in this paper and these for recent described cobalt(II)/manganese(III) porphyrin/phthalocyanine-fullerene dyads are introduced from which ideas for the future design of high performance organic solar cells will be developed.