Лаборатория «Компьютерный синтез химических соединений»

Лаборатория основана при поддержке Мегагранта.

Мегагранты – программа международного сотрудничества российских вузов и научных организаций с учеными мирового уровня и ведущими зарубежными научно-образовательными центрами в сферах науки, образования и инноваций. Программа стартовала 9 апреля 2010 года с принятием Правительством Российской Федерации Постановления №220.

Основной задачей лаборатории является разработка вычислительной методологии, базирующейся на методах машинного обучения с целью исследования химического пространства для создания соединений с заданными свойствами, включая перспективные лекарственные препараты.

 

Проекты, гранты:

2021 - 2023: Грант Правительства Российской Федерации для государственной поддержки научных исследований, проводимых под руководством ведущих ученых в российских вузах и научных организациях (Мегагрант)

Стажер-исследователь, Аспирант
Старший научный сотрудник, Senior Researcher
Кандидат химических наук
Старший научный сотрудник
Кандидат химических наук

[1]     Ksenofontov A.A., Isaev Y.I., Lukanov M.M., Makarov D.M., Eventova V.A., Khodov I.A., Berezin M.B. Accurate prediction of 11B NMR chemical shift of BODIPYs via machine learning // Phys. Chem. Chem. Phys. - 2023. - V. 25. - P. 9472–9481. https://doi.org/10.1039/D3CP00253E.
[2]   Dogadaeva S.A., Antina L.A., Ksenofontov A.A., Kalyagin A.A., Khodov I.A., Berezin M.B., Antina E.V., Pavelyev R.S., Frantsuzova L.V., Lodochnikova O.A., Islamov D.R. Novel fluorescent mono-Br-BODIPYs as potential theranostic agents and their nanoscale zeolitic imidazolate framework delivery systems // Journal of Molecular Liquids. - 2023. - V. 382. - Art. 121892. https://doi.org/10.1016/j.molliq.2023.121892.
[3]     Islyaikin M.K., Ivanov E.N., Koifman O.I., Konarev D.V. New expanded porphyrinoids: Synthesis, structure and properties of hemihexaphyrazines and their reduced metal containing derivatives // J. Porphyrins Phthalocyanines. - 2023. - V. 27. - P. 55–67. https://doi.org/10.1142/S1088424623300069.
[4]     Ivanov E.N., Almeida-Marrero V., Koifman O.I., Aleksandriiskii V.V., Torres T., Islyaikin M.K. Synthesis and Characterization of Bulky Substituted Hemihexaphyrazines Bearing 2,6-Diisopropylphenoxy Groups // Molecules. -  2023. - V. 28. - P. 5740. https://doi.org/10.3390/molecules28155740.
[5]     Kibireva Y.E., Islyaikin M.K., Rodríguez-Morgade M.S., Torres T.  Synthesis and Characterization of a Soluble Hemihexaphyrazine Derivative // MHC. - 2023. - V. 16. - P. 19–23. https://doi.org/10.6060/mhc234968i.
[6]     Makarov D.M., Fadeeva Y.A., Shmukler L.E. Predictive modeling of physicochemical properties and ionicity of ionic liquids for virtual screening of novel electrolytes // Journal of Molecular Liquids. - 2023. - V. 391. - Art. 123323. https://doi.org/10.1016/j.molliq.2023.123323.
[7]   Mamardashvili G., Kaigorodova E., Lebedev I., Mamardashvili N.  Molecular Recognition of Imidazole-Based Drug Molecules by Cobalt(III)- and Zinc(II)-Coproporphyrins in Aqueous Media // Molecules. - 2023. - V. 28. - P. 964. https://doi.org/10.3390/molecules28030964.
[8]     Sobornova V.V., Maltceva O.V., Khodov I.A., Mamardashvili N.Z. 1H NMR study of kinetics of the Ni(II) and Zn(II) cations complex formation with 2-aza-5,10,15,20-tetraphenyl-21-carbaporphyrin // Inorganica Chimica Acta. - 2023. - V. 556. - Art.121638. https://doi.org/10.1016/j.ica.2023.121638.
[9]   Telegin F.Y., Karpova V.S., Makshanova A.O., Astrakhantsev R.G., Marfin Y.S. Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping // International Journal of Molecular Sciences.- 2023. - V. 24. - P. 1217. https://doi.org/10.3390/ijms24021217.
[10]     Yarullin D.N., Zavalishin M.N., Gamov G.A., Lukanov M.M., Ksenofontov A.A., Bumagina N.A., Antina E.V. Prediction of Sensor Ability Based on Chemical Formula: Possible Approaches and Pitfalls // Inorganics. - 2023. - V. 11. - P. 158. https://doi.org/10.3390/inorganics11040158.
[11]     Zvezdina S.V., Chizhova N.V., Mamardashvili N.Z. Complexation of Halogen-Substituted Tetraphenylporphyrins and Cadmium(II) Tetraphenylporphyrins with MnCl2 in DMF // Russ J Org Chem. - 2023. - V. 59. - P. 597–605. https://doi.org/10.1134/S1070428023040061.
[12]   Antina  L.A., Bumagina N.A., Kalinkina V.A., Lukanov M.M., Ksenofontov A.A., Kazak A.V., Berezin M.B., Antina E.V.  Aggregation behavior and spectroscopic properties of red-emitting distyryl-BODIPY in aqueous solution, Langmuir-Schaefer films and Pluoronic® F127 micelles // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. - 2022. - V. 278. - Art.121366. https://doi.org/10.1016/j.saa.2022.121366.
[13]     Berezin M.B., Dogadaeva S.A., Antina E.V., Lukanov M.M., Ksenofontov A.A., Semeikin A.A. Design and physico-chemical properties of unsymmetrically substituted dipyrromethenes and their complexes with boron(III) and zinc(II) // Dyes and Pigments. - 2022. - V. 202. - Art. 110215. https://doi.org/10.1016/j.dyepig.2022.110215.
[14]     Bichan N.G., Ovchenkova E.N., Ksenofontov A.A., Mozgova V.A., Gruzdev M.S., Chervonova U.V., Shelaev I.V., T.N. Lomova, Meso-carbazole substituted porphyrin complexes: Synthesis and spectral properties according to experiment, DFT calculations and the prediction by machine learning methods // Dyes and Pigments. - 2022. - V. 204. - Art. 110470. https://doi.org/10.1016/j.dyepig.2022.110470.
[15]     Bichan N.G., Ovchenkova E.N., Mozgova V.A., Ksenofontov A.A., Kudryakova N.O., Shelaev I.V., Gostev F.E., Lomova T.N. Donor–Acceptor Complexes of (5,10,15,20-Tetra(4-methylphenyl)porphyrinato)cobalt(II) with Fullerenes C60: Self-Assembly, Spectral, Electrochemical and Photophysical Properties // Molecules. - 2022. - V. 27. - P. 8900. https://doi.org/10.3390/molecules27248900.
[16]     Bumagina N.A., Antina E.V., Krasovskaya Z.S., Berezin M.B., Ksenofontov A.A., Vyugin A.I., Semeikin A.S. Dipyrromethene chromo-fluorogenic chemosensors for quantitative detection and express analysis of Zn2+ ions //  Journal of Molecular Liquids. - 2022. - V. 345. - Art.117834. https://doi.org/10.1016/j.molliq.2021.117834.
[17]    Dipan Ghosh, Uwe Koch, Kamyar Hadian, Michael Sattler, Igor V. Tetko, Highly Accurate Filters to Flag Frequent Hitters in AlphaScreen Assays by Suggesting their Mechanism // Molecular Informatics. - 2022. - V. 41 2100151. https://doi.org/10.1002/minf.202100151.
[18]    Galina Mamardashvili, Nugzar Mamardashvili, Oscar Koifman, Design, Sensing and Binding Abilities of Porphyrin-based Heterotopic Receptors with Well-defined Geometries // CTCB-V3. - 2022. - P. 1–56. https://doi.org/10.9734/bpi/ctcb/v3/2292A.
[19]     Ivanova Y.B., Pukhovskaya S.G., Kiselev A.N., Syrbu S.A. Physicochemical Basis for the Creation of Liquid-Phase Sensor Materials Based on Tetraaryldithiaporphyrins // Russ J Gen Chem. - 2022. - V. 92. - P. 231–240. https://doi.org/10.1134/S1070363222020128.
[20]     Kalyagin A., Antina L., Ksenofontov A., Antina E., Berezin M. Solvent-Dependent Fluorescence Properties of CH2-bis(BODIPY)s // International Journal of Molecular Sciences. - 2022. - V. 23. - P. 14402. https://doi.org/10.3390/ijms232214402.
[21]     Ksenofontov A.A., Bocharov P.S., Ksenofontova K.V., Antina E.V. Water-Soluble BODIPY-Based fluorescent probe for BSA and HSA detection // Journal of Molecular Liquids. - 2022. - V. 345. - Art. 117031. https://doi.org/10.1016/j.molliq.2021.117031.
[22]     Ksenofontov A.A., Lukanov M.M., Bocharov P.S. Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes? // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. - 2022. - V. 279. - Art.121442. https://doi.org/10.1016/j.saa.2022.121442.
[23]     Ksenofontov A.A., Lukanov M.M., Bocharov P.S., Berezin M.B., Tetko I.V. Deep neural network model for highly accurate prediction of BODIPYs absorption // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. - 2022. - V. 267. - Art. 120577. https://doi.org/10.1016/j.saa.2021.120577.
[24]     Likhonina A.E., Lebedev I.S., Mamardashvili G.M., Mamardashvili N.Z. pH indicator and rotary fluorescent properties of the Sn(IV)-octaetylporphyrin-(BODIPY)2 triad // Inorganica Chimica Acta. - 2022. - V. 542. - Art. 121150. https://doi.org/10.1016/j.ica.2022.121150.
[25]     Likhonina A.E., Mamardashvili G.M., Mamardashvili N.Z. Photoactive porphyrin-fluorescein arrays to control the acidity of medium // Journal of Photochemistry and Photobiology A: Chemistry. - 2022. - V. 424. - Art. 113650. https://doi.org/10.1016/j.jphotochem.2021.113650.
[26]     Makarov D.M., Fadeeva Y.A., Safonova E.A., Shmukler L.E. Predictive modeling of antibacterial activity of ionic liquids by machine learning methods // Computational Biology and Chemistry. - 2022. - V. 101. - Art. 107775. https://doi.org/10.1016/j.compbiolchem.2022.107775.
[27]     Makarov D.M., Fadeeva Y.A., Shmukler L.E., Tetko I.V. Machine learning models for phase transition and decomposition temperature of ionic liquids // Journal of Molecular Liquids. - 2022. - V. 366. - Art. 120247. https://doi.org/10.1016/j.molliq.2022.120247.
[28]     Mamardashvili G.M., Kaigorodova E.Y., Lebedev I.S., Mamardashvili N.Z.  Axial complexes of Sn(IV)-tetra(4-sulfophenyl)porphyrin with azorubine in aqueous media: Fluorescent probes of local viscosity and pH indicators // Journal of Molecular Liquids. - 2022. - V. 366. - Art. 120277. https://doi.org/10.1016/j.molliq.2022.120277.
[29]     Ran J., Pryazhnikova V.G., Telegin F.Y. Chemoinformatics Analysis of the Colour Fastness Properties of Acid and Direct Dyes in Textile Coloration // Colorants. - 2022. - V. 1. - P. 280–297. https://doi.org/10.3390/colorants1030017.
[30]   Rusanov A.I., Dmitrieva O.A., Mamardashvili N.Z., Tetko I.V. More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins // International Journal of Molecular Sciences. - 2022. - V. 23. - P. 1201. https://doi.org/10.3390/ijms23031201.
[31]   Rusanov A., Chizhova N., Mamardashvili N. Synthesis, Structure, and Spectral-Luminescent Properties of Peripherally Fluorinated Mg(II) and Zn(II) Octaphenyltetraazaporphyrins // Molecules. - 2022. - V. 27. - P. 8619. https://doi.org/10.3390/molecules27238619.
[32]   Zhabanov Y.A., Giricheva N.I., Islyaikin M.K. Structural Particularities of Monodeprotonated Hemihexaphyrazine Complexes with Y, La, and Lu according to Quantum Chemical Calculations // Russ. J. Inorg. Chem. - 2022. - V. 67. - P. 350–361. https://doi.org/10.1134/S0036023622030172.
[33]     Zvezdina S.V., Chizhova N.V., Mamardashvili N.Z., Koifman O.I. Effect of halogenation of ortho-positions of tetraphenylporphyrin and its Cd(II) complex on their complexing ability towards d-metal salts in dimethylformamide // MHC. - 2022. - V. 15. - P. 101–108. https://doi.org/10.6060/mhc224315m.
[34]     Makarov D.M., Fadeeva Y.A., Shmukler L.E., Tetko I.V. Beware of proper validation of models for ionic Liquids! // Journal of Molecular Liquids. - 2021. - V. 344. - Art. 117722. https://doi.org/10.1016/j.molliq.2021.117722.
[35]     Mamardashvili G., Mamardashvili N., Koifman O. Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature // Molecules. - 2021. - V. 26. - P. 5292. https://doi.org/10.3390/molecules26175292.