Scientific and engineering bases of obtaining functional materials and nanocomposites

Head of the department: 
Scope of research: 

The aim of the studies is to develop new approaches to liquid phase synthesis of advanced functional materials based on natural and synthetic polymers and composites with nanoparticles and bioactive molecules as innovative industrially important materials.

Details:

- Developing new methods of obtaining composites based on polysaccharides and nanocrystalline cellulose with antimicrobic activity against Gram negative and Gram positive bacteria;

- Studying the effect of nanocrystalline cellulose as a composite component on calcium carbonate mineralization accompanied by the formation of various polymorphs for modelling biomineralization in polymer scaffolds applied in tissue engineering and regenerative medicine.

- Developing methods of modification of natural and synthetic polymers, including multicomponent compositions based on thermodynamic and structural studies of their solutions.

- Studying the effect of natural and synthetic polymers on the physicochemical properties of biologically active compounds.

- Developing methods of obtaining meso- and microporous nanostructured materials, porous carbon metal-containing composites, as well as magnetic adsorbents, photoactive materials, films, coatings, and membranes.

- Developing the scientific basis of plasma-chemical synthesis of hybrid nanomaterials based on polymers containing metal oxides and studying their adsorption, catalytic and bactericidal properties.

- Developing novel types of electrorheological gels and elastomers;

- Obtaining novel hybrid materials based on graphene, magnetic nanoparticles and molecular magnetics producing a strong magnetocaloric effect.

Key words: 
Biodegradable films
Silica hydrogels
Metal-organic frameworks
Plasma
Polymer composite
Ultrafiltration membranes
Delivery systems
Polymer gels
Host-guest complexes
Polymers and surfactants for pharmaceutical use
Natural, modified and polymeric cyclodextrins
Cooperation: 

- Ivanovo State University;

- Ufa Institute of Chemistry of Ufa Federal Research Centre of the Russian Academy of Sciences;

- Moscow Pedagogical State University;

- A.V.Topchiev Institute of Petrochemical Synthesis, RAS (Moscow);

- Mechanical Engineering Research Institute of the Russian Academy of Sciences (Moscow);

- All-Russian Research Institute of Starch and Processing of Starch-Containing Raw Materials (Moscow);

- A.N.Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (Moscow);

- Saint Petersburg State University;

- Kazan (Volga Region) Federal University;

- University of Palermo, Italy;

- South-Central Minzu University,Wuhan, China;

- Ivanovo University of Chemistry and Technology, Russia;

- Ivanovo State Power Engineering University, Russia;

- V.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Russia.

Publications: 

1. Ivanov K.V., Noskov A.V., Alekseeva O.V., Agafonov A.V. Synthesis of CaCu3Ti4O12: How Heat Treatment Influences Morphology and Dielectric Properties // RUSSIAN JOURNAL OF INORGANIC CHEMISTRY. – 2021. – Vol. 66. - No. 4. – P. 490-495. DOI: 10.1134/S0036023621300021.

2. Alekseeva O.V., Shibaeva V.D., Noskov A.V. Enhancing the thermal stability of ionogels: Synthesis and properties of triple ionic liquid/halloysite/mcc ionogels / [et al.] // MOLECULES. – 2021. – Vol. 26. - No. 20. DOI: 10.3390/molecules26206198.

3. Sirotkin N.A., Khlyustova A.V., Titov V.A., Agafonov A.V. The Use of a Novel Three-Electrode Impulse Underwater Discharge for the Synthesis of W-Mo Mixed Oxide Nanocomposites // Plasma Chemistry and Plasma Processing. – 2021. – V. 42. – P. 191–209. DOI: 10.1007/s11090-021-10213-3.

4. Alekseeva O.V., Noskov A.V., Titov V.A.  Adsorption performance of the polystyrene/montmorillonite composites: Effect of plasma treatment  // THE SCIENCE OF THE TOTAL ENVIRONMENT . – 2021. – Vol. 167. – P. 108505. DOI: 10.1016/j.cep.2021.108505.

5. Agafonov A.V., Grishina E.P., Kudryakova N.O.  Ionogels: Squeeze flow rheology and ionic conductivity of quasi-solidified nanostructured hybrid materials containing ionic liquids immobilized on halloysite // ARABIAN JOURNAL OF CHEMISTRY. – 2022. – Vol. 15. - No. 1. – P. 103470. DOI: 10.1016/j.arabjc.2021.103470.

6. Khlyustova A., Sirotkin N., Titov V., Agafonov A.  One-Pot Underwater Plasma Synthesis and Characterization of Fe- and Ni-Doped Boehmite // Crystal Research & Technology. – 2022. – Vol. 57. - No. 2. – P. 2100117. DOI: 10.1002/crat.202100117.

7. Алексеева О.В, Шипко М.Н., Смирнова Д.Н. и др. Модификация поверхности и физико-химических свойств алюмосиликатных нанотрубок галлуазита наночастицами магнетита // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2022. – № 3. – С. 23-30. DOI: 10.31857/S1028096022030025

8. Агафонов А.В., Сироткин Н. А., Титов В.А., Хлюстова А.В. Подводная низкотемпературная плазма как инструмент синтеза неорганических наноматериалов // Журнал неорганической химии. – 2022. – Т. 67. - № 3. – С. 271-280. DOI: 10.31857/S0044457X22030023.

9. Kochkina N., Nikitina M., Agafonov M., Delyagina E., Terekhova I. iota-Carrageenan hydrogels for methotrexate delivery // Journal of Molecular Liquids. - 2022. – Vol.  368. – P. 120790. DOI:10.1016/j.molliq.2022.120790.

10. Delyagina E., Garibyan A., Agafonov M., Terekhova I. Regularities of encapsulation of tolfenamic acid and some other non-steroidal anti-inflammatory drugs in metal organic frameworks on the basis of γ-cyclodextrin // Pharmaceutics. -  2023. V. 15(1). – P. 71. DOI: 10.3390/pharmaceutics15010071