Laboratory of physical chemistry of drug compounds

Main research themes of the Laboratory:

“Development of scientific basis for creation of neurodegenerative and anti-inflammation drug compounds and forms with improved solubility and permeability characteristics”

Head of the Laboratory: Perlovich G.L., PhD, DSc

The main problems:

In spite of the fact that in many cases affinity to the receptors is obviously a key moment for the potential drug compound candidates, other factors such as solubility, distribution in the immiscible phases, absorption properties, active and passive transport characteristics are also of a great importance for in vivo processes. Unfortunately the above aspects are taking into account only on the final stages of preparation’s screening and design. As a result, the selected candidates possessing the best affinities to the receptors reveal in vitro a wide spectrum of undesirable properties: low solubility in biologically relevant media and extremely poor membrane permeability. Just these points are the serious barriers for the potential candidates («hit-compounds») to become an effective drugs. Even the contemporary advancements of drug substances delivery by means of the complicated pharmaceutical systems can’t compensate the above mentioned limitations. A much more effective and economical way assumes controlling the permeability of the compounds through the different types of membranes on the stages preceding biological and preclinical testing. As a result, not only the facilities economy of highly expensed in-vivo tests occurs, but also the procedure of choosing the «leader-compound» is considerably promoted.

To solve the problems in the Laboratory it is carrying out investigations in the following areas:

  • Development of drug compounds with neuroprotective and cognitive-stimulating actions;
  • Development of scientific basis for obtaining well soluble drug substances/forms by using cocrystal technology;
  • Development and design of High Throughput Screening (HTS) algorithms of membrane permeability of drug compounds;
  • Impact of structural modification of drug molecules (without disturbing pharmacological site) on ADME characteristics;
  • Polymorphism of drug compounds;
  • Development of drug delivery systems;

The studies are conducting:

  • Investigation of sublimation processes of drug compounds;
  • X-ray diffraction analysis and theoretical description of crystal lattice energies of molecular crystals;
  • Studying solubility and solvation processes of drug substances in biological relevant mediums;
  • Studying distribution/partitioning processes of drug compounds in the model systems;
  • Design of membranes modeling to the various biological barriers;
  • Investigation and analysis of membrane permeability of drug substances;
  • Studying intermolecular interactions of drugs in biological mediums, crystals and pharmaceutical systems;
  • Development of screening algorithms for obtaining pharmaceutical cocrystals;

Международное сотрудничество:

  • Болгария, Юго-Западный Университет “Неофит Рилски”, Благоевград
  • Индия, Индийский Институт Химической Технологии (IICT), Hyderabad
  • Китай, Университет Сунь Ят-Сена (Гуаньджоу)
  • Китай, Таньцзиньский Технологический Унверситет
  • Китай, Пекинский Технологический Институт
  • Китай, Шанхайский Институт Медицинских Материалов, Китайской Академии Наук (Шанхай)
  • ЮАР, Кейптаунский Университет, Химический факультет, Центр Супрамолекулярной химии (Кеуптаун)
  • Китай, Университет Сунь Ят-Сена (Гуаньджоу)
  • Норвегия, Институт Фармацевтики Университета Тромсё
  • Италия, Институт химических наук Университета Болоньи
  • Германия, Биомедицинский исследовательский центр (Борстель)
  • Германия, Федеральный институт исследования и тестирования материалов (Берлин)
  • Финляндия, Институт фармацевтики Университета Хельсинки
  • Швеция, Pharmaceutical and Analytical R&D, AstraZeneca R&D, Mölndal
  • Шотландия, Институт фармацевтики Университета Глазго
  • Дания, Институт физики и химии Южного университета Дании, Оденсе

Российское сотрудничество:

  • Институт физиологически активных веществ РАН, Черноголовка
  • Институт проблем химической физики РАН, Черноголовка
  • Институт общей и неорганической химии РАН, Москва

 

Main classes of the compounds for treating of socially significant diseases – the objects of the laboratory investigations.

Compounds for treating of Alzheimer’s disease.

Alzheimer’s disease is a common form of dementia disorder, characterized by the progressive decline of memory and highly cerebral functions that in the final analysis leads to the complete degradation of intellectual and cognitive activity. According to the social significance Alzheimer’s disease takes the third place after cancerous and cardiovascular diseases.Due to the real tendency of constant increasing the percentage of elderly population the search of new approaches aimed on the regeneration and improvement of brain cognitive functions and memory in biological aging and under the different age depended neurodegenerative disorders have been intensified last years. The tendency of screening and creating the positive modulators of NMDA-subtype Glu receptors as the potential cognition enhancers have been intensively developed last time.

                             

 

                             

 

Нестероидные антиантрогенные соединения

 

Противотуберкулезные соединения

 

  

 

Антибактериальные

 

альфа- и бета-адреноблокаторы

 

 

Non-steroidal anti-inflammatory drugs (NSAIDs)

 

Antibiotics

 

Cocrystal Screening

In recent years, the development of a pharmaceutical cocrystal has become a novel strategy to improve the solid state properties of an API. Usually, the solubility characteristics improve on the orders and this fact leads to essential reduction of therapeutic doses and, as a consequence, side effects. A cocrystal can be described as a supramolecular system formed by two different molecular entities where, one from the compounds is a poorly soluble API, whereas the second component presents a molecule of well soluble substance, which uptakes by body completely and takes part in enzymatic processes. The second component molecule belongs to GRAS (Generally Regarded As Save) list which includes the compounds recommended for application at pharmaceutical and food industries.

Carried out investigations:

  • Cocrystal screening;
  • Characterization of cocrystal by X-ray diffraction methods;
  • Studying cocrystal solubility processes (kinetic and thermodynamic approaches) and comparison of the obtained characteristics with individual cocrystal components;
  • Parameters searching to obtain thermodynamic stable cocrystals with controlled stoichiometry aimed to scale-up procedure;
  • Membrane permeability of cocrystal and comparison with analogous characteristics of individual components.

 

Investigation of membrane permeability processes

Laboratory carries out membrane permeability study and screening API using artificial membranes prepared on basis of phospholipids vesicles with specified function distribution of the size particles. The mentioned phospholipids membranes are a good model describing passive transport processes of gastrointestinal tract. The main advantage of the proposed method is opportunity simulation of both transcellular and paracellular drug delivery pathways.

In laboratory it develops algorithms High Throughput Screening (HTS) drug compounds to select substances with optimal permeability characteristics

 

Type of carried out investigations:

  • Membrane permeability screening;
  • Database generation which includes permeability coefficients of different class of compounds;
  • Development of correlation models for prediction of compounds with maximal membrane permeability values.

 

Studying solubility processes

On the basis of information of pharmaceutical industry about 40 % of development compounds fail to reach the market due to poor pharmaceutical properties as a result of poor solubility, permeability and metabolic stability. Especially these moments lead to essential side effects and reduction of therapeutic effectiveness of drugs. Therefore, solubility screening and prediction of these characteristics for novel compounds is very actual goal for drug design.

 

Comparison of the distribution of drug solubility on the US, GB, ES. JP, and WHO list. [Takagi et al. Mol. Pharm. 2006, 3(6):631–643.]

 

In laboratory it carries out comprehensive investigations of studying API solubility characteristics in various pharmaceutical important solvents.

Type of carried out investigations:

  • Solubility screening API in aqueous mediums;
  • Solubility of API within the wide temperature interval (15 – 45 °С);
  • Thermodynamic characteristics of API solubility processes;
  • Generation of database including solubility values of the client’s compounds;
  • Making models predicting solubility values of new substances;
  • Studying and analysis of API solubility kinetics;
  • Analysis of the bottom phases and search of appropriate conditions (solvent, experimental time, temperature and so on) for obtaining pharmaceutical important crystallosolvates.

 

Studying Partition/Distribution processes

Partition/Distribution coefficients (logP; logD) are important physicochemical characteristics of compounds enabling estimate preferable drug delivery pathways.

Used pairs of immiscible solvents:

Model of gastrointestinal tract membranes:

  • Buffer with pH 2.0 / 1-octanol
  • Buffer with pH 7.4 / 1-octanol
  • Water / 1-octanol

Model of blood-brain barrier:

  • Buffer with pH 2.0 / n-hexane
  • Buffer with pH 7.4 / n-hexane
  • Water / n-hexane

Type of carried out investigations:

  • Partition/Distribution coefficients screening;
  • Database generation which includes partition/distribution coefficients of different class of compounds;
  • Development of correlation models for prediction of partition/distribution coefficients for compounds with specified structures.

 

Studying sublimation processes

Sublimation of active pharmaceutical ingredient (API) molecular crystals is a key experiment for estimation of crystal lattice energies. Moreover, sublimation characteristics are often used as test parameters for normalization of pair potential function to build theoretical models describing solubility phenomenon. The sublimation properties are usually applied for solubility optimization of new classes of developed compounds and for creation of models predicting these characteristics.

In laboratory it carries out comprehensive study of sublimation characteristics of molecular crystals with detail description of thermodynamic properties and structures of the compounds.

Type of carried out investigations:

  • Temperature dependencies of saturated vapor pressure of API molecular crystals within a wide temperature interval (25 – 200 °С);
  • Conditions screening for monocrystals preparation of the client’s compounds and solving crystal structures by X-ray diffraction methods;
  • Thermodynamic description of sublimation processes of studied API.

 

Polymorphism of molecular crystals

Polymorphism may be defined as the ability of a compound to crystallize in two or more crystalline phases with different arrangements and/or conformations of the molecules in the crystal lattice. This broad definition is widely accepted today in crystal engineering, materials science and pharmaceutical development. The existence of polymorphism implies that free energy differences between various forms are small (2-30 kJ mol-1) and that kinetic factors are important during crystal nucleation and growth. Polymorphs are ideal systems to study molecular structure–crystal structure–crystal energy relationships with a minimum number of variables, because differences arise due to molecular conformations, hydrogen bonding, and crystal packing effects but not due to a different chemical species.

Polymorphism is more widespread in pharmaceutical solids, with estimates of 30–50% in drug-like molecules, compared to 4–5% polymorphic crystals in the Cambridge Structural Database (CSD). Interest in polymorphism is growing because different solid-state modifications have different physical, chemical and functional properties such as melting point, stability, color, bioavailability, toxicity, pharmacologicalactivity, nonlinear optical response, etc. Polymorph screening is now regarded as an important and routine step in the development of specialty chemicals, drugs and pharmaceuticals.

 

Type of carried out investigations:

  • Polymorphs screening of drug compounds;
  • Characterization of polymorphs by X-ray diffraction methods (powder diffraction, single crystal);
  • Studying of thermodynamic stability of polymorphs via DSC and solution calorimetry techniques;
  • Investigating of solubility process of polymorphs (thermodynamic solubility, dissolution rate).
Inventor and patent and licensing work:
  1. Перлович Г.Л., Манин А.Н., Дрозд К.В. Сокристаллическая форма изониазида. Патент № 2630957, Бюллетень № 26, опубликовано: 15.09.2017
  2. Перлович Г.Л., Манин А.Н., Дрозд К.В. Сокристаллическая форма дифлунисала. Патент № 2617849, Бюллетень № 13, опубликовано: 28.04.2017
  3. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Surov, A.O.; Voronin, A.P. Co-crystalline form of theophylline with diflunisal or diclofenac. Ref. No: RU 2542100, 20.02.2015.
  4. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Voronin, A.P. Co-crystalline form of 3-hydroxybenzamide with salicylic acid. Ref. No: RU 2539350, 20.01.2015
  5. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Surov, A.O.; Voronin, A.P. Co-crystalline form of niflumic acid with isonicotinamide or caffeine. Ref. No: RU 2536484, 27.12.2014
  6. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Voronin, A.P. Cocrystalline form of fenbufen with pyrazinamide with increased solubility. Ref. No: RU 2521572, 27.06.2014
  7. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Surov, A.O.; Voronin, A.P. Method for obtaining the co-crystalline form of bicalutamide. Ref. No: RU 2510392, 27.03.2014
  8. Perlovich, G.L.; Manin, A.N.; Manin, N.G.; Voronin, A.P. Co-crystalline form of 2-hydroxybenzamide and 4-aminobenzoic acid. Ref. No: RU 2497804, 10.11.2013
Awards:

 

   Award of publishing house “ELSIVER” for the most cited paper in 2004 year published in European Journal of Pharmaceutics and Biopharmaceutics

Award of European Federation for Pharmaceutical Sciences for the Best paper published in European Journal of Pharmaceutics in 2003 year

 

Projects and grants:

Исследования были поддержаны:

Российским Научным Фондом:

№ 19-13-00017 «Фундаментальные и прикладные аспекты создания биодоступных противогрибковых препаратов» Рук. Перлович Г.Л.

№ 19-73-10005 «Дизайн и исследование новых многокомпонентных кристаллических форм антигельменных лекарственных соединений. Совместное применение экспериментальных подходов и методов молекулярного моделирования» Рук. Суров А.О.

№ 17-73-10351 «Создание новых лекарственных соединений антибактериального действия на основе многокомпонентных молекулярных кристаллов» Рук. Манин А.Н.

№ 15-13-10017 «Разработка новых лекарственных соединений, обладающих нейропротекторными и когнитивно-стимулирующими свойствами, с привлечением подходов супрамолекулярной химии» Рук. Терехова И.В.

№ 14-13-00640 «Разработка научных основ создания биодоступных лекарственных препаратов нового поколения с использованием сокристальной технологии на примере противотуберкулезных соединений» Рук. Перлович Г.Л.

Российским Фондом Фундаментальных Исследований

№ 19-53-45002 (Россия-Индия) «Дизайн и исследование новых многокомпонентных кристаллических форм нестероидных антиандрогенных соединений» Рук. Суров А.О.

№ 19-53-18003 (Россия-Болгария) «Оптимизация параметров активности, растворимости и мембранной проницаемости за счет структурной модификации аминопроизводных адамантана для создания биодоступных лекарственных соединений» Рук. Перлович Г.Л.

№ 18-29-04023 «Научные основы получения и функционирования металл-органических полимеров на основе циклодекстринов для доставки и пролонгирования действия противоревматических лекарственных соединений» Рук. Терехова И.В.

№ 14 - 03 – 31001 «Сокристаллы фармацевтического назначения: получение и физико – химические свойства» Рук. Суров А.О.

№ 13-03-00348 «Структурная оптимизация бициклических неароматических производных 2-амино-1,3-селеназинов нейропротекторного и антиоксидантного действия с целью коррекции характеристик влияющих на биодоступность» Рук. Волкова Т.В.

№ 18-33-00485 «Разработка и апробация метода теоретической оценки энергии кристаллической решётки применительно к сокристаллам модельных и нестероидных противовоспалительных соединений» Рук. Воронин А.П.

Грантами Президента РФ

МК-2309.2013.3 «Получение растворимых форм нестероидных противовоспалительных соединений на основе сокристальной технологии» (Конкурс – МК-2013). Рук. Манин А.Н.

МК - 67.2014.3 «Дизайн перспективных антиастматических лекарственных форм нового поколения» Рук. Суров А.О.

Стипендиями Президента РФ

СП-331.2015.4 «Разработка методов поиска и исследования сокристаллических форм лекарственных соединений для получения препаратов комбинированного действия с улучшенными показателями растворимости» Манин А.Н.

СП-678.2016.4 «Разработка биодоступных лекарственных соединений нового поколения на основе смешанных молекулярных кристаллов» Суров А.О.

СП-1214.2019.4 «Научные основы создания лекарственных форм с контролируемым высвобождением на основе многокомпонентных кристаллов» Воронин А.П.

Международными проектами

IRSES-GA-2009-247500 7 Рамочная Программа Евросоюза в области технических и естественных наук (Франция, Дания, Германия, Россия)

Фондом содействия инновациям

№ 9105ГУ/2015 «Исследования в области дизайна растворимых лекарственных форм нестероидных противовоспалительных соединений по сокристальной технологии» Рук. Воронин А.П.

Федеральным агентством по науке и инновациям (№ 02.740.11.0857; № 2012-1.4-12-000-1028-6539; № 14.616.21.0027)

Программой Отделения химии и наук о материалах РАН “Медицинская и биомолекулярная химия”

Программой Президиума РАН “Фундаментальная наука медицине”

Программой Президиума РАН “ Фундаментальные основы технологий наноструктур и наноматериалов” Подпрограмма “Нанобиотехнологии”

Фондом поддержки отечественной науки в номинациях “доктор наук”, “кандидат наук”, “лучший аспирант”

Двухсторонними соглашениями:

  • Российско-Норвежским
  • Российско-Итальянским
  • Российско-Датским
  • Российско-Финским
  • Российско-Китайским
Leading Researcher
Phd in chemistry
Researcher
Phd in chemistry
Head of Department
Doctor of сhemical sciences
professor
Senior Researcher
Phd in chemistry
Researcher
Phd in chemistry
Senior Researcher
Phd in chemistry

2017 – 2019

  1. Blokhina S., Sharapova A., Ol'khovich M., Churakov, A., Perlovich G. New diclofenac choline hydrate salt: Synthesis, characterization and solubility // Journal of Molecular Structure. - 2019. - V. 1198, in press. (quartile 3; IF = 2.12; DOI: 10.1016/j.molstruc.2019.126922)
  2. Drozd K.V., Manin A.N., Perlovich G.L. Comparative analysis of experimental methods for determining thermodynamic parameters of formation of multi-component molecular crystals: Benefits and limitations // J. Mol. Liq. - 2019, in press (quartile 1; IF = 4.561; DOI: 10.1016/j.molliq.2019.111644)
  3. Manin A.N., Voronin A.P., Drozd K.V., Perlovich G.L. Thermodynamic properties of Nalidixic and Oxolinic acids: Experimental and computational study // Thermochimica Acta. - 2019, in press (quartile 2; IF = 2.251; DOI: 10.1016/j.tca.2019.178411)
  4. Blokhina S., Sharapova A., Ol'khovich M., Perlovich G. Thermodynamic study of aceclofenac solubility, distribution and sublimation // J. Chem. Thermodyn. - 2019. - V.137. - P.13–21. (quartile 1; IF = 2.29; DOI: 10.1016/j.jct.2019.05.014)
  5. Sharapova A., Ol'khovich M., Blokhina S., Perlovich G. Solubility and vapor pressure data of bioactive 6-(acetylamino)-N-(5-ethyl-1,3,4-thiadiazol-2-yl) hexanamide // J. Chem. Thermodyn. - 2019. - V.135. - P. 35–44. (quartile 1; IF = 2.29; DOI: 10.1016/j.jct.2019.03.015)
  6. Blokhina S., Sharapova A., Ol'khovich M., Perlovich G. A thermodynamic study of sublimation, dissolution and distribution processes of anti-inflammatory drug Clonixin // J. Chem. Thermodyn. - 2019. - V.132. - P. 281–288. (quartile 1; IF = 2.29; DOI: 10.1016/j.jct.2019.01.006)
  7. Surov A.O., Vasilev N.A., Churakov A.V., Stroh J., Emmerling F., Perlovich G.L. Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability // Crystal Growth & Design. - 2019. - V.19(5). - P.2979-2990.(quartile 1; IF = 4.153; DOI:10.1021/acs.cgd.9b00185)
  8. Surov A.O., Manin A.N., Voronin A.P., Boycov, D.E., Magdysyuk, O.V., Perlovich, G.L. New Pharmaceutical Cocrystal Forms of Flurbiprofen: Structural, Physicochemical, and Thermodynamic Characterization // Crystal Growth & Design. - 2019. - V.19. - P. 5751-5761. (quartile 1; IF = 4.153; DOI: 10.1021/acs.cgd.9b00781)
  9. Dai X.-L., Voronin A.P., Gao W., Perlovich G.L., Lu T.-B., Chen J.-M. Intermolecular interactions and permeability of 5-fluorouracil cocrystals with a series of isomeric hydroxybenzoic acids: A combined theoretical and experimental study // CrystEngComm. - 2019. - V. 21(34). - P. 5095-5105. (quartile 1; IF = 3.382; http://dx.doi.org/10.1039/c9ce00661c)
  10. Tao Q., Hao Q.-Q., Voronin A.P., Dai X.-L., Huang Y., Perlovich G.L., Lu T.-B., Chen J.-M. Polymorphic Forms of a Molecular Salt of Phenazopyridine with 3,5-Dihydroxybenzoic Acid: Crystal Structures, Theoretical Calculations, Thermodynamic Stability, and Solubility Aspects // Crystal Growth & Design. -  2019. - V. 19. - P. 5636-5647. (quartile 1; IF = 4.153; DOI: 10.1021/acs.cgd.9b00618)
  11. Perissinotti L.,  Guo J., Kudaibergenova M.,  Lees-Miller J., Ol’khovich M.,  Sharapova A., Perlovich G.L.,Muruve D.A., Gerull B., Noskov S.Yu., Duff H.J. The Pore-Lipid Interface: Role of Amino Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain // Molecular Pharmacology. -  2019. - V. 96 (2). - P. 259-271. (quartile 1; IF = 2.78; DOI: 10.1124/mol.118.115642)
  12. Manin A.N., Drozd K.V., Churakov A.V., Perlovich G.L. Design of 4-aminobenzoic acid two-component molecular crystals: prediction and experiments // CrystEngComm. - 2019. - V. 21(13). - P. 2119-2129. (quartile 1; IF = 3.304; http://dx.doi.org/10.1039/C8CE01857J)
  13. Ol'khovich M.V., Sharapova A.V., Blokhina S.V., Perlovich G.L., Skachilova S.Y., Shilova, E. A study of the inclusion complex of bioactive thiadiazole derivative with 2-hydroxypropyl-β-cyclodextrin: preparation, characterization and physicochemical properties // J. Mol. Liq. - 2019. - V. 273. - P. 653-662. (quartile 1; IF = 4.561; DOI: 10.1016/j.molliq.2018.10.053)
  14. Blokhina S.V., Sharapova A.V., Ol'khovich M.V., Proshin A.N., Perlovich G.L. Distribution behavior of potential bioactive 1-azabicyclo[3,3,1]nonane derivatives in some organic solvent/buffer pH 7.4 systems // J. Chem. Thermodyn. - 2018. - V. 121. - P.211–221.(quartile1;IF=2.631;DOI: 10.1016/j.jct.2018.02.023)
  15. Manin, A.N., Drozd, K.V., Churakov, A.V., Perlovich, G.L. Hydrogen Bond Donor/Acceptor Ratios of the Coformers: Do They Really Matter for the Prediction of Molecular Packing in Cocrystals? the Case of Benzamide Derivatives with Dicarboxylic Acids // Cryst. Growth Des. - 2018. - V. 18(9). - P. 5254-5269. (quartile 1; IF = 3.972; DOI: 10.1021/acs.cgd.8b00711)
  16. Drozd, K.V.; Arkhipov, S.G.; Boldyreva, E.V.; Perlovich, G.L. Crystal structure of a 1:1 salt of 4-aminobenzoic acid (vitamin B10) with pyrazinoic acid // Acta Cryst. - 2018. - V. 74. - P. 1923-1927. (quartile 1; IF = 0.347; DOI: 10.1107/S2056989018016663)
  17. Surov A.O., Voronin A.P., Vener M.V., Churakov A.V., Perlovich G.L. Specific features of supramolecular organisation and hydrogen bonding in proline cocrystals: a case study of fenamates and diclofenac // CrystEngComm. - 2018. - V. 20. - P. 6970-6981. (quartile 1; IF = 3.304; doi: 10.1039/c8ce01458b)
  18. Blokhina S.V., Sharapova A.V., Ol’khovich M.V., Ustinov A., Perlovich G.L. New derivatives of hydrogenated pyrido[4,3-b]indoles as potential neuroprotectors: Synthesis, biological testing and solubility in pharmaceutically relevant solvents // Saudi Pharmaceutical Journal. - 2018. - V. 26. - P.  801–809. (quartile 1; IF = 3.11; doi.org/10.1016/j.jsps.2018.04.003)
  19. Perlovich G.L., Volkova T.V. Sublimation thermodynamic aspects of adamantane and memantine derivatives of sulfonamide molecular crystals // Phys. Chem. Chem. Phys. - 2018. - V. 20. - P. 19784 – 19791. (quartile 1; IF = 3.906  http://dx.doi.org/10.1039/C8CP03716G)
  20. Manin A.N., Voronin A.P., Drozd K.V., Churakov A.V., Perlovich G.L. Pharmaceutical salts of emoxypine with dicarboxylic acids // Acta Cryst. - 2018. - V. 74. - P. 797-806. (quartile 1; IF = 8.678 (2018); https://doi.org/10.1107/S2053229618007386)
  21. Perlovich G.L. Two-component molecular crystals: Relationship between the entropy term and the molecular volume of co-crystal formation // CrystEngComm. - 2018. - V. 20. - P. 3634 - 3637. (quartile 1; IF = 3.304; http://dx.doi.org/10.1039/C8CE00592C)
  22. Voronin A.P., Volkova T.V., Ilyukhin A.B., Trofimova T.P., Perlovich G.L. Structural and Energetic aspects of Adamantane and Memantine Derivatives of Sulfonamide Molecular Crystals: Experimental and Theoretical Characterisation // CrystEngComm. - 2018. - V. 20. - P. 3476–3489. (quartile 1; IF = 3.304; http://dx.doi.org/10.1039/c8ce00426a)
  23. Surov A.O., Churakov A.V., Proshin A.N., Dai X.-L., Lu T., Perlovich G.L. Cocrystals of 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways // Phys. Chem. Chem. Phys. - 2018. - V. 20. - P. 14469 – 14481. (quartile 1; IF = 3.906; http://dx.doi.org/10.1039/C8CP02532K)
  24. Surov A.O., Voronin A.P., Drozd K.V., Churakov A.V., Roussel P., Perlovich G.L. Diversity of crystal structures and physicochemical properties of ciprofloxacin and norfloxacin salts with fumaric acid //  CrystEngComm. - 2018.-V.20.-P.755–767.(quartile 1;IF=3.304;http://dx.doi.org/10.1039/c7ce02033c)
  25. Blokhina S.V., Ol’khovich M.V., Sharapova A.V., Volkova T.V., Proshin A.N., Perlovich G.L. Solubility and distribution of bicycle derivatives of 1,3-selenazine in pharmaceutically relevant media by saturation shake-flask method // J. Chem. Thermodynamics. - 2017. - V. 115. - P. 285-292. (quartile 1; IF = 2.726; http://dx.doi.org/10.1016/j.jct.2017.08.012)
  26. Blokhina S.V., Sharapova A.V., Ol’khovich M.V., Volkova T.V., Proshin A.N., Perlovich G.L. Thermodynamic aspects of solubility and solvation of bioactive bicyclic derivatives in organic solvents // J. Chem. Eng. Data. - 2017. - V. 62(12). - P. 4288-4295. (quartile 1; IF = 2.323; DOI: 10.1021/acs.jced.7b00641)
  27. Blokhina S.V., Volkova T.V., Golubev V.A., Perlovich G.L. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents // Mol. Pharm. - 2017. - V. 14. - P. 3381-3390. (quartile 1; IF = 4.440; DOI: 10.1021/acs.molpharmaceut.7b00401)
  28. Blokhina S.V., Sharapova A.V., Ol’khovich M.V., Volkova T.V., Perlovich G.L., Proshin A.N. Sublimation enthalpy of 1,3-thiazine structural analogues: Experimental determination and estimation based on structural clusterization // Thermochimica Acta. - 2017. - V. 656. - P. 10-15. (quartile 2; IF = 2.236; DOI: 10.1016/j.tca.2017.08.004)
  29. Blokhina S.V., Sharapova A.V., Ol’khovich M.V., Perlovich G.L. Sublimation thermodynamics of four fluoroqunolone antimicrobial compounds // J. Chem. Thermodynamics. - 2017. - V. 105. - P. 37-43. (quartile 1; IF = 2.726; http://dx.doi.org/10.1016/j.jct.2016.10.010)
  30. Perlovich G.L. Prediction of Sublimation Functions of Molecular Crystals Based on Melting Points: Cocrystal Formation Thermodynamics Application // Cryst. Growth Des. - 2017. - V. 17(8). - P. 4110–4117. (quartile 1; IF = 4.055; DOI: 10.1021/acs.cgd.7b00290)
  31. Perlovich G.L. Two-component molecular crystals: evaluation of the formation thermodynamics based on melting points and sublimation data // CrystEngComm. - 2017. - V. 19. - P. 2870 –2883. (quartile 1; IF = 3.474; DOI: 10.1039/c7ce00554g)
  32. Ol'khovich M.V., Sharapova A.V., Perlovich G.L., Skachilova S.Y., Zheltukhin N.K. Inclusion complex of antiasthmatic compound with 2-hydroxypropyl-β-cyclodextrin: Preparation and physicochemical properties // Journal of Molecular Liquids. - 2017. - V. 237. - P. 185-192. (quartile 1; IF = 3.648; DOI: 10.1016/j.molliq.2017.04.098)
  33. Ol'khovich M.V., Sharapova A.V., Skachilova S.Y., Perlovich G.L. Physico-chemical study of bioactive N-(5-ethyl-1,3,4-thiadiazole-2-yl)-4-nitrobenzamide: Sublimation, solubility and distribution //  Thermochimica Acta. - 2017. - V. 657. - P. 72-78. (quartile 2; IF = 2.236; http://dx.doi.org/10.1016/j.tca.2017.09.010)
  34. Drozd K.V., Manin A.N., Churakov A.V., Perlovich G.L. Drug-Drug Cocrystals of Antituberculous 4-Aminosalicylic Acid: Screening, Crystal Structures, Thermochemical and Solubility Studies // European Journal of Pharmaceutical Sciences. - 2017. - V. 99. - P. 228-239. (quartile 1; IF = 3.753; http://dx.doi.org/10.1016/j.ejps.2016.12.016)
  35. Drozd K.V., Manin A.N., Churakov A.V., Perlovich G.L. Novel drug–drug cocrystals of carbamazepine with para-aminosalicylic acid: screening, crystal structures and comparative study of carbamazepine cocrystal formation thermodynamics // CrystEngComm. - 2017. - V. 19. - V. 4273 –4286. (quartile 1; IF = 3.474; DOI: 10.1039/c7ce00831g)
  36. Surov A.O., Volkova T.V., Churakov A.V., Proshin A.N., Terekhova I.V., Perlovich G.L. Cocrystal formation, crystal structure, solubility and permeability studies for novel 1,2,4-thiadiazole derivative as a potent neuroprotector // European Journal of Pharmaceutical Sciences. - 2017. - V. 109(15). - P. 31-39. (quartile 1; IF = 3.753; http://dx.doi.org/10.1016/j.ejps.2017.07.025)
  37. Surov A.O., Manin A.N., Voronin A.P., Churakov A.V., Perlovich G.L., Vener M.V. Weak Interactions Cause Packing Polymorphism in Pharmaceutical Two-Component Crystals. The Case Study of the Salicylamide Cocrystal // Cryst. Growth Des. - 2017. - V. 17(3). - P. 1425−1437. (quartile 1; IF = 4.055; DOI: 10.1021/acs.cgd.7b00019)
  38. Chislov M.V., Silyukov O.I., Kumeev R.S., Proshin A.N., Perlovich G.L., Terekhova I.V. Complex formation of cyclodextrins with some pharmacologically active 1,2,4-thiadiazole derivatives // J. Therm. Anal. Calorim. - 2017. - V. 127. - P. 1797–1805. (quartile 2; IF = 2.1; DOI: 10.1007/s10973-016-5929-1)
  39. Ol’khovich M.V., Sharapova A.V., Blokhina S.V., Perlovich G.L. Sulfasalazine: dissolution and distribution in pharmaceutically relevant mediums // J. Chem. Eng. Data. - 2017. - V. 62(1). - P. 123–128. (quartile 1; IF = 2.323; DOI: 10.1021/acs.jced.6b00497)
  40. Sharapova A.V., Ol’khovich M.V., Blokhina S.V., Perlovich G.L. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity // J. Chem. Thermodynamics. -  2017. - V. 108. - P. 18-25. (quartile 1; IF = 2.726; DOI: 10.1016/j.jct.2016.12.034)
  41. Volkova T.V., Terekhova I.V., Silyukov O.I., Proshin A.N., Bauer-Brandl A., Perlovich G.L. Towards the rational design of novel drugs based on solubility, partitioning/distribution, biomimetic permeability and biological activity exemplified by 1,2,4-thiadiazole derivatives // MedChemComm. - 2017. - V. 8. - P. 162-175. (quartile 1; IF = 2.31; DOI: 10.1039/c6md00545d)
  42. Volkova T.V., Perlovich G.L., Terekhova I.V. Enhancement of dissolution behavior of antiarthritic drug leflunomide using solid dispersion methods // Thermochimica Acta. - 2017. - V. 656. - P. 123-128. (quartile 2; IF = 2.236; http://dx.doi.org/10.1016/j.tca.2017.09.003)
  43. Perlovich G.L., Surov A.O., Manin A.N. Chapter 2 “Pharmaceutical multi-component crystals with antituberculous application” // Tiekink, E. (Ed.) & Zukerman-Schpector, J. (Ed.) Multi-Component Crystals. Synthesis, Concepts, Function. Berlin, Boston: Walter de Gruyter GmbH. - 2017. - P. 32 – 59 ISBN: 978-311046495-5;978-311046365-1. (DOI: 10.1515/9783110464955-002)
  44. Perlovich G.L., Surov A.O. Chapter 10 “Fenamate Crystals and Cocrystals: Structural and Thermodynamic Aspects.” In book “Crystal Growth: Concepts, Mechanisms and Applications” By editors Prof. Jinjin Li. - 2017. - P. 317-363. ISBN: 978-1-53612-226-8. NOVA SCIENCE PUBLISHERS, INC. NY, USA.
type:Diffractometers
type:Spectrometers / Spectrophotometers UV and visible region
type:Analyzers
type:Calorimeters
type:Spectrometers / Spectrophotometers UV and visible region
type:Spectrometers / Spectrophotometers UV and visible region
type:Spectrometers / Spectrophotometers UV and visible region